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SUMMARY

In this paper we study estimation of the parameters of generalized
linear mwodels in canonical form when the explanatory vector is measured
with independent normal error. For the functional case, i.e., when the
explanatory vectors are fixed constants, unbiased score functions are
obtained by conditioning on certain sufficient statistics. This work
generalizes results obtained by the authors (Stefanski & Carroll, 1986) for
logistic regression. In the case that the explanatory vectors are indepen-
dent and identically distributed with unknown distribution, efficient score
functions are obtained using the theory developed in Begun e¢ a/. (1983).

Related results can be found in Bickel & Ritov (1986).

Some key words: Conditional score function; Efficient score functjon:
Functional model; Generalized linear model; Measurement error; Strurtural

model.
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1. INTRODUCTION

Given a covariate p-vector u assume that Y has the density

T T
. - Y{a+8 u)-b(a+p u)
hY(y,O,u) exp{ (o) + c(y,Q)} (1.1

with respect to a o-finite measure w(+:); in (1.1) OT - (a,BT.Q) and
a(+),b(-) and c(-,) are known functions. The density (1.1) is that of a
generalized linear model in canonical form (McCullagh & Nelder, 1983, Ch.
2). Suppose now that u cannot be observed but that M independent measure-
ments x-(xl,...,xM) of u are available. When measurement error is

normally distributed the matrix X has density

M ~-p/2 .
hy(x58,u) = 1 LZI%_;__ exp{-&(x -w'g 1(x - u)}. (1.2)
j=1 i . .

Together (1.1) and (1.2) define a generalized linear measurement-error
model with normal measurement error. If for a sample (Yi'xi) (i=1,...,n)
the covariables (ui) are unknown constants, a functional model is obtained;
if (ui) are independent and identically distributed random vectors from

some unknown distribution, a structural model is obtained (Kendall &

Stuart, 1979, Chapter 29). In this paper the problem of deriving unbiased
scores for 6 in both functional and structural models is studied.

There 18 a vast literature on this problem in the special case that
(1.1) is a normal density. This dates back to Adcock (1878) and has been
revieved by Anderson (1976); see also Moran (1971). Recently there has
been considerable interest in nonlinear measurement-error models; see

Prentice (1982), Wolter & Fuller (1982a, 1982b), Carroll et sl. (1984),

T e R R s REEE A AL TTEE Y Y

Stefanski (1985) and Stefanski & Carroll (1986).
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The density (1.1) includes normal, Poisson, logistic and gamma

regreseion models. The key feature these models have in common is the

existence of a natural sufficient statistic for u when all other parameters

are fixed. The same is true of the normal density in (1.2). In fact (1.2)

could be replaced with any density possessing a natural sufficient statis-~
tic for u when other parameters are fixed and much of the following theory
holds with little or no modification. However, in the framework of
measurement-error models no other assumption on the error distribution is
more palatable than that of normality and thus the added generality is
sacrificed for a reduction in notational complexity.

In Section 2 functional models are studied and unbiased score
functions for estimating 6 in the presence of the unknown uis are
presented. This work generalizes and extends results of Stefanski &
Carroll (1986) for logistic regression. Structural models are studied in
Section 3 and efficient score functions for estimating 6 in the presence
of the unknown distribution for u are identified. These results are
obtained using the theory of efficient estimation developed by Begun et
al. (1983). Other work in this area includes that of Bickel & Ritov
(1986).

In the case that the covariates ul,...,un are observed without
error the maximum likelihood estimator of @ maximizes

n
Y log hy (Y ;8,u)

i=}

with respect to 6. Let ii be the mean of the M measurements of uys

value of 8 which maximizes

that

n
Y log hy(Y, 50,X,)
i=]

will be referred to as the naive estimator. This estimator is usually

inconsistent (Stefanski, 1985) although when /M is small its bias will

be small.
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2. FUNCTIONAL MODELS

2.1 The functional likelihood
Consider the functional version of model (1.1) & (1.2). 1In this
section the case M » ] is studied under the additional assumption that
/a(¢) = 2 (known). (2.1)
Throughout this section the random variables (Yi,xi), (i=]l,...,n) are
independent but not identically distributed since their distributions

depend on the true regressors u,, which vary with 1. However, for nota-

i

tional convenience the subscript i will be dropped when referring to (Yi,X )

i

in those situations where it causes no confusion. Under (1.1), (1.2) and

(2.1) the joint density of (Y,X) takes the form

hY,x(y,x:O.U) = hy(y:i8,u)h (x;8,u). (2.2)
For a set of n observations the log-likelihood is
n
L(e, LIRRRER ) = ¥ log{h Y, ,X 30,0 )} (2.3)
1=1 1

In the case that Y is normally distributed it is known that under (2.1)
maximizing (2.3) with reapect to (u.BT,Q,ul,...,un) results in consistent
estimators of the regression coefficients a and B (Gleser, 1981). For any
model other than the normal, the task of maximizing (2.3) with respect to
its n+p+2 parameters is formidable and not likely to be undertaken. More
importantly it is not generally true that maximizing (2.3) produces
consistent estimators. It follows from results in the first author's
University of North Carolina Ph.D. thesis that in the case of logistic
regression the functional wmaximum likelihood estimator of (a,B8) is not
consistent under assumption (2.1); see also Stefanski & Carroll (1986).

The unwieldy functional likelihood, and its failure to produce consistent

estimators in some important cases point to the need for an alternative

theory of estimation which is now pursued.

._-..'.-.-.- P I N S -
_.‘“.. RS e e S T . e e e e T T e

3
h'
:
]

E
X

e e R e e i

: o '»4'. R FIN o .‘-' T e o - - ’ ' ’ - '.'.'A'.\. -
e N e LR e P P T S S . T R
‘&{ K T e e T T N e e T et e e e e,
J-.J. A s L . vy ‘JA‘-“,!- = P B e T B A R S S S AP U P S L S Y




' Radny/ el G

2.2 Unbiased score functions
In this section unbiased score functions for the functional model are
obtained by conditioning on certain sufficient statistics. Note that (2.2)

can be written as

hY x(y,x;O,u) = q(§,0,u)r(y,x,98) (2.4)
where
T, -1 T.-1 T
- ufl § _ ufl u+ 2b(asg u) }.
q($,0,u) exp { 2 (8) 7a(e) : (2.5)

2ax-xTQ-lx *
r(y,x,8) = exp % 25(8) + C (y.¢)} H

§ = 8(y,x,0) = x + yQB;
* P
C (y,s) = clv,0) - (Hlog({2nale)} i91].

Thus viewing u as a parameter and a, 8 and ¢ as fixed, the statistic

A= A(Y,X,0) = X + YQB (2.6)
is sufficient for u. As a consequence, the distribution of Y|A depends
only on the observed variables Y and X and 8, but not on u. From this
conditional distribution it is possible to derive unbiased estimating
equations for 8 which are independent of u.

Let h (y{6:08) denote the conditional distribution of Y|A = §. To

YiA

find h note that the Jacobian of the transformation which takes (Y,X)

Y|A
into (Y,X+YRB) has a determinant of one. Thus

pr{Y=y, A=§)dm(y)dé = pr{Y=y, Xed-y{iB)dm(y)ds
and after some routine calculatior 3 one finds

J(y,8,8)
[J(y,6,08)dmly)

(yl6;0) = (2.7

hYIA

where
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‘ Toy _ vzl N
X Jy,6,8) = exp{ZXig*c 8) y 8 08 + c(y,o)}. (2.8) “,
20(¢) NS
I N
Define iA
T Ry
2 Lol
S(n,8,0) = [ exr’{yn - Lz%(%% + C(y.w}dm(y). :;::
3
This allows (2.7) to be written as o)
. ] »
. - - M - :-v:.:-
hyja(y16:8) e""[y" 5ete) * C(V+®) = log{S(n,8,0)} (2.9)
T e
when n = (a + 6§ B)/a(e). |
A Note that (2.9) is an exponential-family density with Y as the natural é??
. sufficient statistic for n. Thus moments of Y|A=§ can be computed from ;if
‘ the partial derivatives of S(n,B,¢) with respect to n, e.g., f”'
E,(Y[8=6) = (3/9n)log{S(n,8,8)H _ T ; o
0 ns(a+B 8)/a(e) (2.10) N
a (32 2 s0r
vare(YIA-G) (3% /9n )IOS{S('}989¢)}|“.(°*8T6),a(¢)’ ::\-‘
h Ry
Since h | is an exponential-family density it is true that
X where t'_:-:
! N
. na
hYIA(ylc:e) - (a/ae)hy,A(yas;e). &
Thus defining ;}i
(yié;8) ;:;
Yi{A ,
y Vo ly,x,0) = ——l————- (2.12) iz
. § hyjaY183®) foaievas B
. it follows that ws(~.-.-) is unbiased for 6, i.e., 3::
4 .
J Eg{ug(Y,X,0)} = E[E {vg(Y,X,8)]a}] = O. .
. The inner conditional expectation is zero by virtue of (2.11). ror
: The score ws will be called the sufficlency score and any estimator ;:;
- . aT o T e
' Os - (as.Bs.Cs) which satisfies
n ::::"
. P
! AR
e

.h.u -.‘--.
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n R
T owg(Y X, 8 g =0 (2.13) X
is] s ¥
will be called a suffictency estimator.

g,
Consider the density in (2.4) and let h = (3/38)h, ,. Note that e
Y,X Y,X 2

hY,X(y'x:e'“) _ E{ Y, x(Y W X3:68,u) |A . 6}
hY,x(y.x;G.u) Y.},((Y.X:e,u)

{y - E(Y|a=8)}/a(e)

5y Ny

-

= |{y - E(Y|A=8)}u/a(9)

rQ(Yax.e) - E{r¢(Y,X,0)!A-6}

where
* ) T .~1
9C (y,x,8) _ {ZQ‘L‘X 2 X} '(8)
Y} 202(&) | °© .

t¢(y.x,6) =

As the expression in brackets above depends on the unknown covariate u only

as a 'weight' this suggests the class of score functions

{y-E(Y|{A=8)}/a(0)

wc(y,x.e) = | {y-E(y|A=8)}Qt(4) (2.14)
lrQ(y,x,B)-E{rQ(Y,X,O)IA-G} s=x+y08 ii;A
indexed by the vector-valued function t(-:). The score (2.14) will be tf{:
RS
called a conditional score following Lindsay (1980, 1982, 1983). Some o

natural choices for t(4§) might be t{(é)=4 and t(6)-E9(X|A-6). Note that

since X is unbiased for u and A is sufficient for u the latter choice -

corresponds to replacing u by its uniformly minimum variance unbilased "
estimator. Also since ; '2ir
Eg(X|Am8) = 6 - E (Y|a=8)08 (2.15) o

only the conditional moments of Y|A are needed to find Ee(XlA-G). More e
will be said on appropriate choices for t(:) in Section 3.3. 'if:‘
N

I e e e, el o e e . _-‘ - . . RN
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Any estimator OC which satisfies
n -
T v (Y,X,0,) =0 (2.16)
im}

will be called a conditional estimator.

The estimating equations in (2.12) and (2.14) are both unbiased.

Although it should be possible to show that under reasonable conditions

there always exist consistent sequences of estimators OS and OC
satisfying (2.13) and (2.16) respectively, it is not generally true that

(2.13) and (2.16) define 0. and @

S c uniquely. More importantly, there

can exist sequences of solutions to (2.13) and (2.16) which are not con-
sistent, and thus care must be taken when defining OS and OC. In

practice a couple of solutions to this dilemma are possible. The first

consists of defining the estimators OS and ;C as the solutions to

(2.13) and (2.16) which are closest to the naive estimator introduced in
Section 1. This rule is justifiable when measurement error is small,
however it can break down when measurement error is large. This is
discussed in greater detail for the normal model in the next section. The
second solution entails doing one or two steps of a Newton-Raphson iter-
ation of (2.13) and (2.16) starting from the naive estimator. Again this ia
gener»’ly gppropriate only when the measurement is small. However, in some
realistic sampling situations, Stefanski & Carroll (1986) show that such an
approach substantially improves upon the naive estimator in their study of

measurement error in logistic regression. Finally, preliminary work by the

authors suggests that it 1s possible to deconvolute the empirical distri-

bution function of the observed Xi's to obtain an estimator of the empiri-
cal distribution function of the ui's, which under regularity conditions

can be used to construct consistent estimators for the functional model.

These estimators can then be used to uniquely define the more manageahle

s
g@
!
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M-estimators, es and OC.
When consistent sequences of solutions to (2.13) and (2.16) are
obtained the asymptotic distributions of es and BC are easily derived

since both are M-estimators; see Huber (1967).

2.3 Normal, logistic and Porsson regression
In this section the strengths and limitations of the estimation theory
are illustrated by studying it in three particular generalized linear
models.
Consider first the case in which Y has a normal distribution with mean
o + BTu and variance ¢¢. For this model ¢ = 0%, a(¢) = ¢ and m(:) is
Lebesque measure. Using (2.7) one finds that the distribution of Y|A = §

is normal with variance ¢¢/(1 + BTQB) and mean u where

T
. 0t B 6 )

1+ BTQB
Corresponding to (2.12) one finds

(2.17)

1
+ ;z(y-p)

__g%—— - %7{(y~p)298‘(Y‘H)(G-QMQB)}
148 028

-1 (v - wi(1+pap)
202 20" S=x+yQlB

ws(y,x,e) =

where n is defined in (2.17). Define
» T ~1
A, = (I+R8B ) {A(Y_,X_,8)-afB}
p! i1
where At:,-,-) is given bv (2.6) and consider the equations

n
T, * 1
igl(Yi-n-B ap) ( * ) =0 (2.18)

I O BTQB
n
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It is a simple matter to show that every solution to (2.18) is also a
solution to wa(Yi,Xi,e) = 0, i.e., any solution to (2.18) is a sufficiency
estimator. The similarity of (2.18) to the usual normal equations is
readily apparent. However, keep in mind that A: depends on o and B and

thus (2.18) is nonlinear in the parameters.

*
Note that Ai is also a sufficient satatistic for uy when a, 8, and o¢

%*
are fixed. Because of (2.18) and the fact that given Ai’ Yi is normal

* *
with mean o + BTAi, Ai will be called a conjugate sufficrfent statris~

%*
tic. Also since Ai is the functional maximum likelihood estimator for ui

in this model (Gleser, 1981), equation (2.18) shows that the functional

maximum likelihood estimator is a sufficiency estimator.

From (2.18) it follows that &_ = Y - §:i and using this it is

S

possible to deduce that §S satisfies

~ n “ n . n
- T 2 - 'I‘ -
Bs(ileis\)(i*)Ws'*igl(Yi*ﬂ xi*xi*)as+ iglyi*xi* 0 (2.19)

where Yi* = Yi - Y, Xi* = X, - X.

Consider (2.19) for the case p = 1, 1.e., éS 1s a scalar. This quad~

ratic equation has two real roots (Kendall & Stuart, 1979, Chapter 29);

unfortunately the sufficiency principle does not indicate which root is

appropriate. Had the equations (2.18) been derived as the gradient of the

functional log-likelihood the appropriate root would have been dictated by

the maximizing principle.

In the previous section it was suggested that in the case of multiple

solutions to (2.13) and (2.16) to pick that solution closesat to the naive

estimator and that this selection rule would work as long as the measure-

ment error variance was small. In this particular case the two roots of

.................

-----------
...........................

------
--------------------
...........
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(2.19) converge to B and -uzl(aot’), where t? = Q¢? is the measurement
error variance. The naive estimator converges to ozﬂol(a:¢11) where

03 is the limiting value of the sample variance of the true u,'s. Thus

the suggested selection rule will asymptotically choose the right root

whenever )
u u [
- S—————— < aa——— ¢ mm——— .
'Bo| 1 02 ¢+ 1 o + 1 By 128
u u o

This inequality is satisfied if
02 \2 4020; 4
212 < 02 + (0%2/B2) + (o2 + =) —
u o u B B
o o
The infimum of the right hand side above with respect to the ratio Uleg
is 203. Thus whenever 1? < oa the selection rule works no matter what
the values of ¢¢ and B;: however, if 1¢ > 03 and 02/82 is sufficient-
ly amall then the selection rule chooses the wrong root. This is encour-
aging for it is unusual to have measurement error so large that 1?¢ 2 0;.
To gain some additional insight into the performance of the suf- -

ficiency estimator suppose that u -»u  are independent normal variates

10

with mean My and variance u;, i.e. assume a structural model. In this
case, (Kendall & Stuart, 1979, Chapter 29) the structural and functional
maximum likelihood estimators are the same, and in light of the previous
discussion this common estimator is also a sufficiency estimator. Thus in
this particular case the sufficiency score is an efficient score.

*
Finally for the normal model Ee(YilAi) = o + BTAi and from (2.15)
A *
Ee(xil i) = Ai'

Thus ¢ _, and wc define the same estimators, {.e., 6 _ = 0 . when

S S C

t(&)tEe(XIA-G).

Now consider logistic regreasion in which
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Page 11
pro(Y=llu) = F(a + 8Tw),  F(t) = (1 + ™57,
For this model a(¢) # 1 and m(-) is counting measure on {0,1}.
Using (2.7) one obtains
pry(Y=1|a=s) = F{a+(6-4a8) 8} (2.20)
and corresponding to (2.12) is the logistic sufficiency score
T 1
ws(y.x.ﬂ) = [y - Fla+(8~408) B}]( )
§-Q8 §=x+y0B ; (2.21)
and setting Zws(vi,xi,e) = 0 results in the equivalent equations
n T % 1
YA{Y, - F(a + 8°4)} = 0, (2.22)
i i *
i=} Ai

* *
vhere Ai = Ai—tﬂa; note that Ai is a conjugate sufficient statistic.

Stefanski & Carroll (1986) introduced this estimator and show in a Monte
Carlo study that in spite of the possibility of multiple solutions to
(2.22), a modified one~step version of (&S,ﬁg)T starting from the naive
estimator, performed well in some realistic sampling situations. Unlike
the normal model the logistic sufficiency estimator does not correspond to
the funct.onal maximum likelihood estimator, which in this case is not
consistent; see the first author's University of North Carolina Ph.D.
thesis and Stefanski & Carroll. (1986). In Section 3.3 it is shown that
the logistic sufficiency score is optimal for a particular structural

model.

-~

For logistic regression it is not true that 6_ = GC, when

S
t(§)=E(X|A=8). Indeed with EO(Y|A-6) given by (2.20),

E(X|A=6) = § ~ Flo+($-308) 8}08

and corresponding to (2.16) are the equations

n 1
T %
)2 {Yi - Fla + B Ai)){ * 1 T %* } 0.
i=1 i A1 + 3 - Fla + B A ) Q8
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The final model considered is that of Poisson regression in which

lexp{k(a+BTu) - exp(a+BTu)}.

pry(Yekju) = (k")~

For this model a(¢) = 1 and m(:) is counting measure on {0,1,...}.

From (2.7) it follows that

-1 Ty _ v2gT 25

Pre(Y-RIA-G) - gk!) expik(a+g §) kg 08/2} . (2.23) e

Y T (39 expiscarnTs) - 3287a8/2) -
. 1< ]

Since (2.23) has no closed form the sufficiency scores ws and wc are quite

messy and are not given. Note that there is no conjugate sufficient .;

N

': statistic. Also, as in logistic regression, the estimators os and OC 4

are not equal for this model when t(8)=E(X|A=§).

The conditional distribution (2.23) is more typical of generalized

linear models than are those from the logistic and normal models. Since in

(2.8) the factor yZBTQBIZA(¢) appears in the exponent it is only in special

Thus

cases that the denominator of (2.7) can be obtained in closed form.

implementation of the sufficiency estimators will often require numerical

integration or summation.

3. STRUCTURAL MODELS

3.1 The structural likelthood S

In this section the model studied is the structural version of (1.1) &

(1.2), , i.e., u +,u  are independent and identically distributed

10"

observations with unknown density gU(u). Since it should cause no con- - ;f‘

fusion the subscript U on gv(u) is omitted. The density g is an element of

G, a family of densities with respect to the measure v(:). As in Section ..

Z, it is assumed that M=l along with the identifiability condition

(2.1). Under these conditions the joint density of (Y,X) is

J. -, - - . -y = - . a -~ . - . - Lt .t LR T e s e ® s e _® .. = ® .
e L T T A S S B T n T S S S S S S L T S S S S e S S T e )
. o

« ® e " a \ ‘-I \ P A
A et A \""““'\\"-.xs\"\ NI SRS R SRR
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fY'x(y.x;O,g) = [hY’x(y,x:o,u)g(u)dv(u) (3.1)
where hY X is defined in (2.2).
Let fY’x(y,x;O.g) - (3/30)fY’x(y,x;9.s) and assume that

£y ((yixi0,8) = [h x;0,u)g(u)dv(u)

Y’x(y.
where,
. hy,x(y'x’°'“) = (3/89)hY’x(y,x;0,u)

i.e., assume that differentiation and integration can be interchanged in

(3.1). 1If g(-) were known then the efficient score for 8 would be

fnx(y,x:o,g)
fY'x(y’x;eng)

i(Yoxyo’g) -

and the information available in (Y,X) for estimating 6 would be

1= EGED.
Throughout this section interest lies in estimating 8 when g and hence ;
are unknown. Note that both the sufficiency and conditional scores of
Section 2 are unbiased for the structural model (3.1) also. Attention

therefore is directed to the problem of finding efficient score functions.

3.2 Efficlent score functions and Information bounds.
Efficient score functions for estimation of ¢ = (u,BT.tb)T in the

presence of the nuisance function g(-) are now derived. As with the

theory in Section 2 the existence of certain sufficient statistics plays a
. key role here. The derivation draws heavily on the results of Begun, Hall,

Huang & Wellner (1983); see also Pfanzagl (1982, Chapter 14). The

structural wodel studied here is a generalization of a model considered by

Bickel & Ritov (1986), Whereas they study simple linear regression under a

number of conditions, including that of replicated measurements and our

assumption (2.1), we consider the more general model only under the latter
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assumption. However, the approach used here to derive efficient scores
extends quite naturally to the case of replicated measurements when (2.1)
is not assumed.

In the following u denotes the product measure of m(:)x Lebesque
measure on p-dimensional Fuclidean space. As in Begun et a2/. (1983) let .
L?(p) and L?(v) denote the L?-spaces of square-integrable functions with
respect to the measures } and v respectively. Norms and inner products on
these spaces are denoted by H'lu and <-,~>u, and ﬂ-ﬂv and (o,-)v.

The theory of Begun et af. (1983) requires Hellinger-differenti-
abrility of the square root of (3.1) with respect to (6,g); see their
Definition 2.1. It is assumed here, and can be proven under regularity
conditions, that fé'x(y.xze.g) satisfies condition (2.1) of Begun et
al. and hence is Hellinger~differentiable. 1Its drifferentis!/, for sequences
(On,g“) gatisfying non-ou + ﬂgz-g*lv converging to zero, 1s given by

T o _ t_ %
p (On 8) + A(gn g°)
where

o = (%)fg (y,%;8,8)E(y,x,8,8),
Y,X
and the linear operator A taking L?(v) into L?(p) is defined for I in LZ(v)

via

[ hy (y,x;0,u)T(u)dv(u)
AF = ——YaX

2f$,x(y.x:0,g)

When necessary to indicate dependence on (y,x,0,g), p is written p(y,x,0,g)
and Al' as Al'(y,x,0,g).
The key result of Begun et 2/. (1983) used here is that when g is
unknown the efficient score for 0 is
*
2(o0 - Al)

ry,x,0,g) = 7 (3.2)
fY'x(y.x;G,g)
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*

where the L?(v) function I' satisfies
*

< oe-AF . Al‘)p =0 (3.3)

for all functions I obtained as L?(v) limits of sequences (rn) of the form
- ntig -
Fn n (gn g).

In terms of expectations (3.3) becomes

(*)EO [{}:(Y X, e,g) - W}{M }] = 0. (3.4)
'8 £2 ((V,X50,8)) N£D (Y,X50,8)

Note that for any I' ¢ LZ(v)

ALY, X, 0,5 [ Py x{TXi0, 0 (u)dv(u)
1 : - [ h, (Y,X;08,u)g(u)dv(u)
fY,X(Y,X,O,g) Y, X

and thus in view of (2.4)

ZAFQY,X,O,gz [ q(A,8,u)l(u)dv(u) (3.5)
et J q(A,8,u)g(u)dv(u) ’
Y x(Y X,0,g)

where A = X + YQB i1s defined in (2.6). The important fact here is that the
right hand side of (3.5) depends on (Y,X) only through the complete
sufficient statistic A irrespective of I'; this is a consequence of the
sufficiency of A for u, when u is regarded as a parameter. It follows now
that (3.3) holds for all I' when

2AF (Y,X,0,8)
% .
£y x(Y:X30,8)

- EO’S{L(Y.X.O,B)lﬁ}

Thus the efficient score given by (3.2) is

t(y,x,0,g) = L(y,x,0,g) - Es'g{ﬁ(v.x.e.s)QA-c} Sax+viag’

and the "information" available in (Y,X) for estimating 8 in the
presence of g is
I, = E{L(Y,X,0,0)17(Y,X,0,8)}; (3.6)

see Equation (3.4) of Begun ef a&l. (1983).
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To compute A(y,x,0,g) let q*(o,u) = q{é(y,x,0),8,u} where q(§,0,u) and
8(y.x,8) are given in (2.5). Then using (2.4)
fY’x(y,x;O,g) - f q*(o.u)r(y.x.O)g(u)uv(u).

and thus

_ ET) 20
X'(Y»X.O,S) -
[ q rgdv
) * ]
<29 or
TLA a6
= % t+t—
[ q gdv r
Now since
- b'go+urgz
a(¢)
ag" {y = b'(atu’p)} *
3q_ y - a+u u
uTﬂ-lu + 2b(u+uTB) - 2uT9-16(1,x,0) "(8)
L 2al () a'(e),
and
—e.
a(¢)
%% - 0 r(y,x,0)
t¢(y.x.0)
wvhere
£ (y.x.0) = 293&1;21 - { 2ay - x'27'x }a'(¢)
PR AR 26 2a? (¢) ’
%(y,x,0,g8) can be written as
y - fl(cyeag)
2y,x,8,g) = a-l(o) yR(8,0,g) - fz(G.O,g)
a(.)r’(vaoo) - f3(6,0,g) -x“_yns

‘patte t alf bt

. *v..

W22 27

L R
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where the scalar-valued functions fl and f3, and the p~vector-valued

functions R and f2 depend on (y,x) only through 8§ = x+yflg. It follows that
My,x,0,8) = E(y,x,0,8) - E{R(Y,X,0,g)|A=6}

{y ~ E(Y|8=8)}/a(9)

= {{y - ECY[A=8)}R(6,0,8) (3.7
to(y,x,e) - E{rQ(Y,X.B)IA-G) x4y Q8.
Define
w(y) = [ q(v,0,u)g(u)dv(u); (3.8)
and

wiy) = (3/3y)w(y) = ;%;7 J Q-luq(r,e,u)g(u)dv(u);

Now the function R(§,6,g) appearing in (3.7) is given by

R(6,0,g) = gf%%% . (3.9)

Using the relation x = § - yQB

aC(v.0) _ § 20y - (s-yo8)T0 ! (s-ygp)
!"(Y,X‘e) - a‘ = { 282(’) }ﬂ (‘)

and thus (3.7) involves only expectations of functions of Y{A=§.
3.3. Efficiency of the sufficlency and conditional scores
In a structural setting

In the discussion of the normal linear functional model in Section
2.3, it was deduced that the sufficiency score is equivalent to the
efficient score for the structural version of this model when the true
predictors (“1""’“n) are themselves normally distributed. A similar
result for logistic regression is now derived. Compare (2.21) to the
logistic efficient score given by

1
T
My.x,8,8) = [y-Fla+(s-408) a}]{R(G.O.g)}6-x+yQB; (3.10)
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Wiy
: equation (3.10) is just (3.7) for the case of logistic regression. For o~
h QY
’ (2.21) and (3.10) to be equivalent the function R(§,0,g) must be linear in "
4
8. Since by (3.9)
l
2v(s) &
R(C.O.z) - ’ .&'Jn
' this means that log{w(4)} must be a quadratic form in &, call it Q(¢), A
rde
t i.e., using (3.8) with q(é§,6,u) chosen accordingly for logistic regression, tﬁ:'
-
To-1 XN
- N
explQ(8)} = foxpiuTa e~ LE0 ) BG4, o
j l+exp(a+f u)
E Now using a moment-generating-characteristic-function argument it follows fﬁi’
. that :&f
‘ ey
T,~1 N
{ exp{- v g v } Bl 5
{ l+exp(a+g u) A
- ".-"
h_\-_
must be proportional to a p~variate normal distribution. This means that i
R
g(u) must be a mixture of two p-variate normal distributions with different MR
means and common covariance matrix. The picture is now clear; the suf- [:g'
0o
ficiency score (2.21) 1is efficient in a structural setting only when (Y,U) i
satisfy the assumptions of the normal discrimination model, fiﬁ;
't'\':‘
pr(Y-l)-al, UlY-y~N(py.!)- D
Of course if all of this information were known a priori then the linear -
discriminant, a#BTu, would most likely be estimated using the full likeli- T%i
hood as opposed to using logistic regression, see Efron (1975) and Michalik . ik:
)
& Tripathi (1980). S
A theorem is now proved which indicates when the conditional score wc i ;iiﬁ
defined in (2.14) is the efficient score in some structural setting. This ﬁ:ﬁ
LS

provides some insight into appropriate choices for t(:) when choosing a

Py

conditional score (2.14).

44
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THEOREM. 7he conditional score wc Is the efficient score In a structural

model for some density g(:) and some measure Vv(.) If and only If there
exists a real-valued function T(+) such that t(8§)=(3/38)T(§) }_:
wvhere exp[T{a(9)R8}] is a moment generating function for some probability

density with respect to v(+).

PROOF. Assume that wc is the efficient score in a structural model with
density g(-) and measure v(-). Then comparing (2.14) and (3.7) it follows

that

A

t(8) = w(s

N

where w(8) is given by (3.8). Let T(§) = log{w(8)}-k for a constant k to

be determined later. Clearly (3/38)T(8)=t(8) and furthermore, using (3.8),

T.-1 T ~1 T
ot [ o] o - S e

Thus with k chosen accordingly M(§)=exp{T{a(¢)Q5}] is a moment

generating function of the density

T,~1 T
ufl u+ 2b(asB u)
exp{k - 2a(¢) }g(u)

with respect to v(:).

The steps in this argument can be reversed to prove the theorem in the

other direction. 1111

The discussion of efficiency in a functional setting is difficult. In

light of this a reasonable approach is to choose a conditional score,

L L B R
- -~ - . - -
NN
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N g o
) (2.14), which is known to be efficient for some structural model. The :
y .
¢
’ theorem indicates that the class of appropriate functions t(:) is fairly AE
»
U
restricted.
o
)
: 3.4. Efficient estimation. A
) Y
’ Since the efficient score in (3.7) depends on the unknown density ]
* ° n:',.
g(+), it is not readily apparent how one constructs a sequence of H&
L i."
o
estimators with asymptotically minimum variance. Begun ez &/. (1983) ;{{
N‘
suggest in general solving N
] n - o
: T oMY, ,X,,8,8) =0 (3.11) s
S | -
: i=] S
| where g(-) is some suitable initial estimator of g(:). Since the o
9 - \'-
empirical distribution function, Fn’ of the observed X's converges to
the convolution of G with a normal distribution function it should in i:
-:\‘k
theory be able to deconvolute ﬁn to obtain consistent estimators of G . Qt:
which would then be smoothed to obtain estimators of g(-). In practice i
-
¥ I A
3 this is quite difficult and technical problems might arise when p>1. Also K
=
A R }’-:\
- given a g(-) it 1s still possible that (3.11) will have multiple o
Y solutions, not all yielding consistent sequences. ]
‘!
)
This last problem can be avoided i{f a root-n consistent preliminary f:,
'\\‘h
estimator, 8, is available. Again let g(:) be an eatimator of g(-) <)
- --$
- Fa
and define "
X N T n ~ - -1
: @=0+1I, n I MY X ,0,8) -

1=1 o

where f* is an estimator of I,, e.g.,

~ -1 n . - a T
I* ®-n 121;(Y1’xi'ev8) °
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...:’l
L]

and

v

l~ !" '.. l..

i(y,x,e’g) - (3/36)}.(y,x,0,g).

~r

Then 6 will generally be asymptotically efficient provided f* and g(-)
are good estimates of I, and g(-) respectively. This approach still
requires an estimator g{(+) of g(-).

Note that A(y,x,0,g) depends on g(-:) only through the function w(:) in

(3.8) and its derivative. In work in progress the authors are investi~
gating a one-step construction of an asymptotically efficient estimator
which estimates w(-:) directly, avoiding the intermediate step of estimating

g(-).

4.0 CONCLUDING REMARKS

In conclusion we reiterate that the assumption of normal errors,
(1.2), is not crucial to the theory developed herein; the existence of a
complete sufficient statistic for u when regarded as a parameter is
crucial. The situation in which (2.]1) is replaced with an assumption of
replicated measurements, i.e., m > 1 in (1.2), is conceptually no different
than when (1.2) is assumed with the exception that both @ and ¢ can now
be estimated; thus there will be an additional p(p+1)/2 - dimensional
component to all the scores.

Although no distributional assumptions on the measurement errors is
more reasonable than that of normality it is still an unverifiable as-
sumption unless replicate measurements are made. The sufficiency, con-
ditional and efficient scores lose their unbiasedness when the assumption
of normal errors is erronecus. Thus when measurement error is nonnormal,

estimates derived from these scores will generally be biased and the bias

will generally not be computable. Approximations to the bias can probably
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' be obtained using the small-measurement asymptotics employed by Stefanski o

- (1985) although we have not attempted these calculations. s

N ACKBOVLEDGEMENTS
The work of R. J. Carroll was supported by the U.S. Air Force Office .

of Scientific Research.

.
ey
R
Vo
5’
NS

e
T )

ettt
LR
L I N

»
3
.

e Be ¥y e tve
s
=X 1‘.v"t'
LS LNS
PN

-
A
o

P

i ‘-.

~

2.

.0 "

Vot

SR AT et e T Ve e .




e
g
50k

Page 23
o
o
ol
...“..
[P
(N

References

S
Adcock, R. J. (1878). A Problem in least squares. The Analyst 5, 53-4. e
¢ Anderson, T. W. (1976). Estimation of linear functional relationships §$§
(with discussion). J. Roy. Statist. Soc. Ser.B 38, 1-36. (f;
- Begun, J. M. Hall, W. J., Hwang, W. M. & Wellner, J. A. (1983). Information E ?‘
and asymptotic efficiency in parametric-nonparametric models. Ann. {3:
Stacise. 11, 432-52. it

Bickel, P. J. & Ritov, Y. (1986). Efficient estimation in the errors-in- ;:-
variables model. A4nn. Statist. to appear.

Carroll, R. J., Spiegelman, C. H., Lan, K. K., Bailey, K. T., & Abbott, R. ;ﬂ;
D. (1984.) On errors-in-~variables for binary models. Biometrika 71, O
19-25. Ok

e

Efron, B. (1975). The efficiency of logistic regression compared to normal
discriminant analysis. J. Amer. Statist. Assoc. 70, 892-98. %

Gleser, L. J. (1981). Estimation in a multivariate 'errors-in-variables’ -
. regression model: large sample results. Ann. Statisec. 9, 24-44, ‘;
Huber, P. J. (1967). The behavior of maximum liklihood estimators under >
nonstandard conditions.. Proceedings of the Fifth Berkeley Syvmposium eag

on Mathematical Statistics and Probability /. Ed. L. M. LeCam & J. .
Neyman, 221-33, University of California Press. Ot

Ry

Kendall, M. G. & Stuart, A. (1979). The Advanced Theory of Statistics, 2. 3}
London: Griffin. -
Lindsay, B. G. (1980). Nuisance parameters, mixture models, and the 5;
efficiency of partial likelihood estimators. Philos. Trans. Roy. Soc. {3{
London Ser. A 296, 639-65. :“i'

P.:J

Lindsay, B. G. (1982). Conditional score functions: some optimality =
results. Bliometriks 69, 503-12. Ado

ASY

Lindsav, B. G. (1983). Efficiency of the conditional score in a mixture {}:
c setting. Adnn. Statist. 11, 486-97. }:}
o

\' »

McCullagh, P. & Nelder, J. A. (1983). Ceneralized Linear Model/s. London: h
Chapman and Hall. o
Michalik, J. E. & Tripathi, R. C. (1980). The effect of errors in diagnosis i
and measurement on the estimation of the probability of an event. J. o
Amer. Statist. Assoc. 15, 713=21. ;ug
Moran, P. (1971). Estimating structural and functional relationshps. ./. e
Mulet. Anal. 1, 232-55. f;:

i

.‘,_,:

A e A T T T e i e e e
- -
2

v a"
AR NG L S S T
_( P A .\-. *» ,\,\ . J— . - R T M W Yy Ty e v
&A\A'h't'a LAY & \' LAY .:._:.._-.1'_5 L.f\.\\. P \ i ke 2 s 'a,;-:."..;'..“.g.‘a".g‘.) RN '.--' e '.trl A 'i'.x' (:‘{.'-". ;-A-I.IAn’.

------




P R e i}

e a8

Page 24

Pfanzagl, 1. (1982). Contributions to a General Asymptotic Statistical
Theory. New York: Springer-Verlag.

Prentice, R. L. (1982). Covariate measurement errors and parameter
estimation in a fallure time regression model. Briomerrika 69,
331-42.

Stefanski, L. A. (1985). The effects of measurement error on parameter
estimation. Biometrika to appear.

Stefanski, L. A. & Carroll, R. J. (1986). Covariate measurement error in
logistic regression. Ann. Statist. to appear.

Wolter, J. M. & Fuller, W. A. (1982a). Estimation of nonlinear errors-in-var
iables models. Ann. Statrise. 10, 539-48.

Wolter, J. M. & Fuller, W. A. (1982b). Estimation of the quadratic
errors~-in-variables model. Brfometrika 69, 175-82.




N g
.
*

% % ¥
-

"h-‘h.

. X

_'a"

? ,.\ -
"‘. -_ A
N2 .
l".
.




